Human Sickness Behavior: Ultimate and Proximate Explanations

Eric C. Shattuck* and Michael P. Muehlenbein

Evolutionary Physiology and Ecology Laboratory, Department of Anthropology, Indiana University, Bloomington, IN

KEY WORDS sickness behavior; cytokines; evolutionary endocrinology; testosterone; cortisol; oxytocin; leptin; melatonin; psychoneuroimmunology; sex; gender; social norms

ABSTRACT Sickness behavior, a coordinated set of behavioral changes in response to infection, lies at the intersection of immunology, endocrinology, and evolutionary biology. Sickness behavior is elicited by pro-inflammatory cytokines, is thought to be an adaptive means of redirecting energy away from disadvantageous behaviors and toward mounting an effective immune response, and may be modulated by hormones, including testosterone and oxytocin. Research on sickness behavior in humans has lagged behind non-human animal research due to methodological complexities. Here we review what is known about sickness behavior in humans, the effects of various hormones on sickness behavior, the possible role of cytokine gene variation in influencing sickness behavior responses, and the ways in which culture and gender norms could similarly influence these behavioral changes. We also propose methodologies for advancing further studies of sickness behavior in humans. Am J Phys Anthropol 000:000–000, 2015. © 2015 Wiley Periodicals, Inc.

Over the past few decades, research has delineated a bi-directional influence of immune system activation on mood and behavior in humans and other animals (Maier and Watkins, 1998; Kiecolt-Glaser et al., 2002). For example, experimental stress, both physical and psychological, can result in an increase in immune system effector molecules (e.g., pro-inflammatory cytokines). These same molecules, whether produced by natural infection or experimental activation of the immune system, have been shown to induce a constellation of behavioral changes, collectively known as sickness behavior (Larson and Dunn, 2001). Sickness behavior is comprised of increased sleep, decreased appetite, reduced social behaviors, reduced mobility, decreased libido, cognitive disturbances, weight loss, hypersensitivity to pain, and depression (Miller et al., 2005), and likely represents a change in motivational states (Aubert, 1999). Hormones associated with immune function and social behavior and mood (e.g., testosterone, oxytocin, and cortisol; Muehlenbein and Bribiescas, 2005; Adelman et al., 2010) may play a role in modulating sickness behavior. This paper discusses sickness behavior in humans, the roles of pro-inflammatory cytokines and hormones in eliciting and/or modulating sickness behavior, and offers suggestions for future lines of research.

WHAT IS SICKNESS BEHAVIOR?

The concept of sickness behavior owes its existence to an evolutionary approach to infectious disease. Kluger and coworkers (1975) conducted several fundamental experiments demonstrating that fever has positive effects on host survivability. Rather than being a simple byproduct of infection, Kluger’s group showed that fever could be an adaptive host response to fight infection. This point was expanded upon by Ewald (1980), who further suggested that host signs of infection could function to benefit the host or the pathogen, benefit both, or benefit neither. For instance, sneezing can benefit the pathogen by helping it spread to other hosts and can benefit the host by clearing mucus and pathogens. In this adaptationist perspective, a benefit to neither organism remains the null hypothesis (Ewald, 1980). Hart (1988) next collated both the physiological and behavioral symptoms of sick animals, and endeavored to show that this pattern of behavioral change could have adaptive benefits for the sick animal in terms of recovery and survivability. Thus, lethargy and reduced activity are thought to represent a shift in energetic priorities away from foraging or mating and toward fighting infection or avoiding predators that might single out the infirm animal (ibid). Later research further defined sickness behavior as an organized suite of behavioral changes exhibited by animals subsequent to infection; to the original list of lethargy, anorexia, and depression was added appetite disturbances, changes in cognition (including effects on memory and reaction time) decreased libido, anhedonia, sleeping disorders, hyperalgesia, and social

Abbreviations: APR, acute phase response; ARH, arcuate nucleus of the hypothalamus; BBB, blood-brain barrier; CRF, C reactive protein; CVO, circumventricular organs; HPA, hypothalamic-pituitary-adrenal; IL-1, interleukin-1; LPS, lipopolysaccharide; PVN, paraventricular nucleus; RRV, residual reproductive value; SNP, single nucleotide polymorphism; SON, supraoptic nucleus; TMJ, temporomandibular joint disorder; TNF-α, tumor necrosis factor-α; VEEV, Venezuelan Equine Encephalitis virus

*Correspondence to: Eric Shattuck, Evolutionary Physiology and Ecology Laboratory, Department of Anthropology, Indiana University, 701 E. Kirkwood Ave. Student Building 130, Bloomington, IN 47405. E-mail: eshattuc@indiana.edu

Received 16 September 2014; revised 27 December 2014; accepted 28 December 2014

DOI: 10.1002/ajpa.22698

Published online 00 Month 2015 in Wiley Online Library (wileyonlinelibrary.com).
withdrawal and isolation (Miller et al., 2005). As shown in Table 1, various aspects of sickness behavior have been found in a number of diverse genera and species, from humans to goldfish (Volkoff and Peter, 2004).

It is generally thought that the behavioral changes in this expanded definition still function to benefit the sick host by reorganizing energetic priorities, though some changes (like cognitive and sleep disturbances) may be adaptively neutral and merely reflect the impact of immune activation. It is important to note that there are as yet no empirical studies demonstrating either increases in the convalescent period (time to recovery following infection) or decreases in survivorship in hosts somehow deprived of the ability to exhibit sickness behavior as a whole. While it is somewhat easier to experimentally manipulate individual aspects of sickness behavior and demonstrate changes in survivorship in hosts somehow deprived of the ability to exhibit sickness behavior, this is not always the case. For instance, mouse dams exhibit typical sickness behavior after treatment with lipopolysaccharide (LPS; a component of Gram-negative bacteria cell walls and a potent inflammatory agent), including diminished nest building and pup retrieval (Aubert et al., 1997). However, when the ambient temperature is decreased from 22°C to 6°C, thus threatening pup safety, LPS-treated dams increase their nest-building and pup retrieval to levels seen in control animals. Whereas moderate doses of LPS affect some maternal and social behaviors in mice, maternal aggression to intruder males is only affected at the highest doses of LPS tested (Weil et al., 2006). In male Gambel's white crowned sparrows (Zonotrichia leucophrys gambelii), administration of exogenous testosterone at levels generally seen during bouts of male-male competition leads to decreased levels of experimentally induced sickness behavior (Ashley et al., 2009). Male zebra finches (Taeniopygia guttata) exposed to LPS show different behavioral responses when housed individually or in social groups; activity is significantly reduced in animals housed alone, whereas no such change is found in treated animals housed in groups (Lopes et al., 2012). When presented with a novel female for 30 minutes,

<table>
<thead>
<tr>
<th>Sickness behavior</th>
<th>Rodents</th>
<th>Birds</th>
<th>Humans</th>
<th>Other animals</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethargy/Fatigue</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X (Macaca mulatta; Sus domesticus; Tragelaphus strepsiceros; Bos taurus)</td>
<td>Johnson et al., 1993; Friedman et al., 1996; Spåth-Schwalbe et al., 1998; Vollmer-Conna et al., 2004; Owen-Ashley, 2006; Owen-Ashley et al., 2006; Escobar et al., 2007; Hetem et al., 2007; Borderas et al., 2008; Ashely et al., 2009; Harrison et al., 2009; Skinner et al., 2009; Adelman et al., 2010; Burness et al., 2010; MacDonald et al., 2014</td>
</tr>
<tr>
<td>Anorexia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Owen-Ashley et al., 2006, 2008; Ashley et al., 2009; Adelman et al., 2010; Nascimento et al., 2013; MacDonald et al., 2014</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Vollmer-Conna et al., 2004; Wright et al., 2005; Stone et al., 2006; Janicki-Deverts et al., 2007; O'Connor et al., 2008; Phillips et al., 2008; Brydon et al., 2009; Eisenberger et al., 2009, 2010; Grigoleit et al., 2011; Wegner et al., 2014</td>
</tr>
<tr>
<td>Cognitive disturbances</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Vollmer-Conna et al., 2004; Krabbe et al., 2005; Brydon et al., 2008; Bucks et al., 2008; Harrison et al., 2009; Grigoleit et al., 2011; Smith, 2012, 2013, reviewed in Cunningham and Sanderson, 2008</td>
</tr>
<tr>
<td>Appetite changes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X (Carassius auratus auratus; Bos taurus; Sus domesticus)</td>
<td>Johnson et al., 1993; Reichenberg et al., 2002; Volkoff and Peter, 2004; Escobar et al., 2007; Borderas et al., 2008; Owen-Ashley et al., 2008; Burness et al., 2010; Nascimento et al., 2013; MacDonald et al., 2014</td>
</tr>
<tr>
<td>Decreased libido/Altered sexual behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avitsur et al., 1997</td>
</tr>
<tr>
<td>Anhedonia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Kent et al., 1992; Hayley et al., 1999; Vollmer-Conna et al., 2004; Henry et al., 2008; Loftis et al., 2008; Moreau et al., 2008; Prendergast et al., 2009; Salazar et al., 2012</td>
</tr>
<tr>
<td>Sleeping disorders</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Hermann et al., 1998; Spåth-Schwalbe et al., 1998; Mathias et al., 2000; Haack et al., 2001; Majde et al., 2010; Cleverenger et al., 2012; Alt et al., 2013</td>
</tr>
<tr>
<td>Hyperalgesia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Watkins et al., 1995; Vollmer-Conna et al., 2004; Wegner et al., 2014</td>
</tr>
<tr>
<td>Social withdrawal</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Henry et al., 2008; Eisenberger et al., 2010</td>
</tr>
</tbody>
</table>
male zebra finches treated with LPS show no significant differences in behavior relative to control animals, whereas sickness behavior is expressed normally in LPS-treated males kept in isolation (Lopes et al., 2013). Similarly, male song sparrows (Melospiza melodia morphna) are relatively insensitive to the behavioral effects of LPS treatment (e.g., reduced activity) only during the breeding season (Owen-Ashley, 2006). Additionally, the lethargy associated with sickness behavior can be counteracted in rhesus macaques (Macaca mulatta) when exposed to the “threatening” presence of a human researcher (Willette et al., 2007). There is additional evidence that patterns of inflammation differ between industrialized and developing countries based on factors such as pathogen and parasite exposure and birth weight (McDade et al., 2007, 2012), which may have downstream effects on sickness behavior. Taken together, these results indicate trade-offs between competing life history stages/trait, namely reproduction and somatic maintenance, such that sickness behavior is suppressed when an individual's evolutionary fitness is threatened.

CYTOKINES IN SICKNESS BEHAVIOR

The predominant physiological mediators of sickness behavior are pro-inflammatory cytokines. These regulatory proteins are secreted by macrophages, Th2 T-cells, and other immune cells during immune activation, and serve to regulate inflammation and recruit additional immune cells to the site of injury or infection. Characteristic features of cytokines include transient production induced by stimuli, autocrine/paracrine/endocrine actions, redundancy, and multiplicity effects (Vilček, 2003). In contrast to hormones, which can be produced by limited types of cells and tissues, cytokines are produced by a variety of cells, and often several unrelated cell types can produce the same cytokine (Vilček, 2003).

Although they can have many effects, cytokines have generally been considered pro-inflammatory or anti-inflammatory based on their actions. Whereas the former group induces the physical components of inflammation (e.g., vasodilation, fever etc.), anti-inflammatory cytokines act to block the inflammatory cascade rather than acting on the relevant tissues themselves (Dinarello, 2000). A well-regulated balance between pro- and anti-inflammatory cytokines is crucial for maintaining a proper immune response. For instance, while pro-inflammatory cytokines are crucial for clearing infections, over-exuberant production or an insufficient production of anti-inflammatory cytokines can lead to a potentially fatal “cytokine storm,” a systemic inflammatory response (Clark, 2007).

It is important to note that cytokine actions are context-dependent; under normal conditions, cells do not encounter a single cytokine, but rather a milieu of various cytokines and other biologically active agents with the potential to produce different synergies or antagonisms (Vilček, 2003). Thus, exposure to this blend of biological compounds may lead to qualitatively different cell responses (Vilček, 2003). This has bearing on the study of sickness behavior, as the majority of research has focused on one or two particular cytokines within a laboratory setting; a consideration of all active, circulating cytokines could serve to challenge conclusions about the effects of a single cytokine both when administered exogenously and when studied *in vivo*.

Several pro-inflammatory cytokines have been strongly and consistently linked with sickness behavior in humans and other animals. These cytokines are interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), which are synthesized and released early in infection, during the acute phase response (APR). The APR is a coordinated sequence that begins at the site of injury or infection, and results in the release of a variety of immunological mediators that serve to direct the organism’s immune response (Bau mann and Gauldie, 1994). Briefly, macrophages, activated by their recognition of a pathogen, release a variety of mediating factors, including IL-1β and TNF-α. These “early” cytokines drive the development of the APR, and act both distally and locally. TNF-α is an important inducer of IL-6 release (Fong et al., 1989; Sundgren-Andersson et al., 1998; Zetterström et al., 1998; Ghezzi et al., 2000). During the APR, endothelial cells are induced to express a variety of adhesion molecules, including intercellular adhesion molecules (ICAMs), which act to slow circulating leukocytes and allow transendothelial passage into tissues (Gearing and Newman, 1993). Fever is generated via an alteration of the temperature set point in the hypothalamus through the actions of IL-1β, IL-6, and TNF-α on prostaglandin E2 (Baumann and Gauldie, 1994). Other APR effects occur in the liver, where IL-6 and other pro-inflammatory cytokines induce release of acute phase proteins, including C reactive protein (CRP) and complement C3, that serve to increase resistance to infection and repair of damaged tissue (Heinrich et al., 1990).

Administration of IL-1β in healthy humans results in fever, joint and muscle pain, and headache, results that are characteristic of the effects of pro-inflammatory cytokines in general (Dinarello, 2000). Furthermore, patients receiving cytokine therapy often report symptoms akin to sickness behavior (Larson, 2002). The role of anti-inflammatory cytokines in down-regulating or “turning off” sickness behavior has been less studied, but we can assume a priori that these compounds play a role in normalizing this behavior, considering their effects on pro-inflammatory cytokines in general.

While the associations between the three aforementioned pro-inflammatory cytokines and sickness behavior appear convincing, precisely how these molecules are able to exert their effects upon the brain remains equivocal. The most obvious explanation is that cytokines accumulate in the bloodstream and make their way to the brain after passing through the blood-brain barrier (BBB). Evidence supporting this notion includes the fact that there are discretely distributed receptors for IL-1β, IL-6, and TNF-α in the brain (Maier and Watkins, 1998). Blocking these receptors can diminish the sickness behavior response to peripherally administered pro-inflammatory cytokines or other immunostimulatory substances, and administration of pro-inflammatory cytokines directly to the brain elicits sickness behavior (Rothwell and Hopkins, 1995). However, the large size of these cytokines makes passive migration through the BBB unlikely without some mediating mechanism. There are currently several proposed mechanisms. First, cytokines could make entry at locations where the barrier is weak or non-existent: the circumventricular organs (CVO; Fig. 1), including the pineal gland and posterior pituitary, among others (Larson and Dunn, 2001; Dantzer et al., 2008).

However, the CVO are isolated from other brain regions by tanyocytes, a specialized form of the BBB (Banks and Erickson, 2010). Cytokines may still interact...
with those neurons that connect the CVO to the rest of the brain, however. It is also possible that there are active transport mechanisms that allow cytokines to diffuse through the BBB. These include cytokine specific receptors and other receptors that induce secondary messenger molecules to act as intermediaries between cytokines in the bloodstream and receptors in the brain (Maier and Watkins, 1998; Dantzer et al., 2008; Banks and Erickson, 2010). Finally, LPS and TNF-α have been shown to disrupt the integrity of the BBB, though this may only occur during drastic, systemic immune activation and/or when the BBB’s repair mechanisms have been exhausted (Banks and Erickson, 2010).

Because administration of pro-inflammatory cytokines in levels too small to be detected in blood is still able to elicit sickness behavior, an alternative to diffusion through the BBB must be considered (Maier and Watkins, 1998). It is known that sensory organs communicate with the brain via peripheral nerves, and the immune system may be thought of as a diffuse sensory organ (Maier and Watkins, 1998). In the case of the immune system, the vagus nerve (cranial nerve X) enervates immunologically relevant anatomical areas (e.g., spleen, gut, thymus, lymph nodes, etc.), and dense IL-1 binding sites are found on paraganglia that synapse onto the vagus nerve (Maier and Watkins, 1998; Dantzer et al., 2008). Furthermore, experimental removal of this nerve (vagotomy) prevents many aspects of sickness behavior induced by peripheral infection, that induce sickness behavior (Maier and Watkins, 1998; Dantzer et al., 2008).

HORMONES IN SICKNESS BEHAVIOR

The effects of changes in hormone levels on the immune system function were demonstrated long ago, when Hans Selye (1936) showed that physical and psychological stressors activated the hypothalamic-pituitary-adrenal (HPA) axis, leading to shrinkage of the thymus and other lymphoid organs. The impacts of hormones on the immune system are many and varied, and mostly hormones now appear to have some immunological effect, whether direct or indirect (see Butts and Sternberg, 2008 and Blalock, 1989 for reviews). These relationships are also bidirectional, such that immune activation and immune system molecules (including cytokines) have effects upon the endocrine system. However, the role of hormones in sickness behavior is less well known. We have chosen to review several hormones that may be relevant, having both immunological and behavioral effects.

Testosterone

Sex steroids are known to have modulatory effects on the immune system (Grossman, 1984). Testosterone is present in both men and women, is produced primarily...
in the testes in men and the ovaries and placenta in women, and is secreted from the adrenal cortex in both sexes. Testosterone is important in regulating energy allocation, particularly with regard to muscle anabolism (Muehlenbein and Bribiescas, 2005). Changes in testosterone levels are associated with immune responses, which likely reflect the hormone's contribution to balancing energetic investment between competing somatic systems, particularly skeletal muscle, secondary sexual characteristics, and the immune system. Lower levels of testosterone are found following myocardial infarction, respiratory illness, burns, and sepsis in men (Spratt et al., 1993). Serum testosterone typically falls at the onset of illness, and increase during recovery. In addition, those patients with greater disease severity typically have lower testosterone than patients with milder disease (Spratt et al., 1993). Testosterone levels show a similar pattern in Honduran men infected with Plasmodium vivax malaria, with levels lowest during peak infection and increased during convalescence (Muehlenbein et al., 2005). Higher levels of testosterone are also associated with higher parasite load, suggesting that high levels of the hormone may predispose individuals toward a compromised immune response (ibid). Studies utilizing macaques (Macaca fasicularis) infected with Venezuelan Equine Encephalitis virus (VEEV) show similar results: higher baseline testosterone levels are positively associated with VEEV viremia after exposure, and testosterone levels also decrease during infection (Muehlenbein et al., 2006). Human immunodeficiency virus, African trypanosomiasis (Trypanosoma brucei), toxoplasmosis (Toxoplasma gondii), schistosomiasis (Schistosoma mansoni), and filariasis (Loa loa and Mansonella perstans) have all been shown to reduce testosterone levels in human males, while infection with Wuchereria bancrofti or Onchocerca volvulus can cause testicular pathology, a common finding in AIDS patients as well (Muehlenbein, 2008).

Testosterone is commonly associated with aggression and sexual behavior/libido. However, it is better described as associated with a general repertoire of social behaviors, including the achievement and maintenance of social status (reviewed in Booth et al., 2006). Some behaviors associated with changes in testosterone include competition, recognition of emotion in others, and expression of dominance (Booth et al., 2000; Eisenegger et al., 2011). Interestingly, testosterone is also linked with mood, showing a paradoxical association with depression: in a sample of over 4,000 military veterans, men with either above- or below-average testosterone levels reported more symptoms of depression (Booth et al., 1999). A recent meta-analysis found that exogenous testosterone administration alleviates depression in hypogonadal males, although this relationship was not found in males over 60 years of age (Amanatkar et al., 2014). It should be noted that relationships between testosterone and depression may not be solely due to any physiological effects of the hormone. Testosterone levels can also be associated with behaviors (e.g., increased risk-taking and antisocial behaviors) that contribute to depression themselves (Booth et al., 1999).

Testosterone is also associated with signs of classic sickness behavior. For example, testosterone levels higher than those required for breeding behavior and physiology suppress sickness behavior in male Gambrel's white-crowned sparrows (Zonotrichia leucophrys gambelii) (Ashley et al., 2009). Gonadectomized males treated with testosterone implants also show a smaller reduction in food intake and activity than intact males following LPS inoculation. Castrated male rats are more sensitive to the behavioral effects (a reduction in social investigations of a juvenile conspecific) of both acute injections and chronic infusions of peripheral IL-1β than intact males (Dantzer et al., 1991). These data suggest that testosterone can attenuate sickness behavior. Furthermore, the overlap between behaviors known to be influenced by testosterone and some of the behaviors known to change during sickness suggests that decreases in circulating levels of testosterone may contribute to sickness behavior expression.

Cortisol

Cortisol is produced in the adrenal cortex in response to physical and psychosocial stressors. For instance, increased urinary cortisol was found in a group of Australian Aborigines on days when many were involved in high-stakes gambling (Schmitt et al., 1998) and in Dominican men playing competitive dominos (Wagner et al., 2002). Long held to be immunosuppressive (Adelman and Martin, 2009), cortisol's actions on immunity may be more “redistributive” whereby activity of the HPA axis and increased release of cortisol in response to stimuli and stressors drive the migration of leukocytes into various immune tissues (e.g., lymph nodes, skin, mucosa etc.) or sites of infection where they will be more likely to encounter a challenge (Dhabhar et al., 1994). Glucocorticoids have also been shown to switch immune responses from a pro-inflammatory, cell-mediated paradigm (the Th1 response) to an antibody-driven response (Th2) characterized by the production of anti-inflammatory cytokines such as IL-4, IL-10, and IL-13 (Elenkov, 2004). These are generally antagonistic toward pro-inflammatory cytokines, and can function to down-regulate their synthesis and release; indeed, glucocorticoids suppress the production of IL-12, a potent pro-inflammatory cytokine and a prime inducer of the Th1 response, which in turn disinhibits the production of IL-4 (Elenkov, 2004).

As with testosterone, cortisol shows a parabolic association with mood. Excessive cortisol production has been reported in a large proportion of depressed patients (Carpenter and Gruen, 1982). Depression is also associated with both Addison and Cushing diseases, which are characterized by below and above normal cortisol production (Musselman and Nemerofer, 1996), though euphoria sometimes approaching mania has been occasionally reported with hypercortisolism (Carpenter and Gruen, 1982). In addition, emotional disturbances are often associated with altered cortisol secretion patterns. Glucocorticoids may also affect neurotransmission and sensory stimuli processing, and hypothalamic implants of cortisol elevate serotonin (Carpenter and Gruen, 1982), suggesting an intermediate mechanism through which glucocorticoids could affect behavior.

Glucocorticoids could function to down-regulate sickness behavior through immune modulation. For example, adrenalectomized animals, or those treated with receptor antagonists, display increased levels of sickness behavior and increased sensitivity to experimental immune challenges (Adelman and Martin, 2009). Adrenalectomized rats also develop adiposis, and corticosterone treatment inhibits development of both fever and anorexia (Pezeshki et al., 1996). Similar results are
found with in adrenalectomized mice infected with murine cytomegalovirus (Silverman et al., 2006).

Oxytocin and vasopressin

Oxytocin stimulates smooth muscle contractions during labor and lactation, lowers blood pressure and slows heart rate, and suppresses cortisol, among other things (Sanchez et al., 2009). Vasopressin is a strong vasoconstrictor that has additional effects on water reabsorption (ibid). Both hormones have roles in reproductive and social behaviors. For example, oxytocin typically decreases anxiety whereas vasopressin promotes anxiety (Sanchez et al., 2009). Oxytocin is also associated with pair bonding, parental behavior, and affiliative behavior, while vasopressin is associated with aggression, courtship, male pair-bonding, and social recognition (Lim and Young, 2006; Sanchez et al., 2009; Campbell, 2010). Both hormones are synthesized in the SON and paraventricular nucleus (PVN) of the hypothalamus, and are secreted by the posterior pituitary (Sanchez et al., 2009). This latter area is one of the CVO where cytokine entry into the brain is most likely.

Oxytocin and vasopressin may both contribute to sickness behavior by modulating cytokine activity and production (Landgraf et al., 1995; Clodi et al., 2008). IL-1β stimulates the release of vasopressin and oxytocin both in vitro and in vivo (Kasting, 1986; Naito et al., 1991; Landgraf et al., 1995). In rats, intracerebroventricular injection of IL-1β increases circulating vasopressin levels by nearly 300%, while oxytocin raises approximately 150% (Landgraf et al., 1995). Direct injection of even smaller doses of IL-1β into the SON do not increase peripheral release of vasopressin or oxytocin, perhaps indicating the primacy of the central nervous system's effects of these hormones in relation to pro-inflammatory cytokines (Landgraf et al., 1995). Elevated oxytocin and vasopressin during illness may function to limit fever via suppression of these cytokines within the brain. Indeed, evidence points to vasopressin being a significant limiter of pyrogens, or substances (including pro-inflammatory cytokines) that elicit fever (Dantzer et al., 1991). In a sample of ten healthy males, oxytocin treatment during administration of bacterial endotoxin leads to reductions in levels of TNF-α and IL-6 (Clodi et al., 2008).

Leptin and ghrelin

Interactions between leptin and ghrelin, two hormones involved in satiety and hunger, may further play important roles in the appetite changes, anorexia, and lethargy of sickness behavior (Adelman and Martin, 2009; Carlton et al., 2012). Leptin is primarily produced in white adipose tissue, and high levels of the hormone indicate a positive energy balance, or adequate energy reserves, whereas a deficit is associated with inadequate energy, and may serve to partition available energetic resources towards different physiological systems and processes (Friedman and Halaas, 1998). Leptin has certain immunological effects as well, namely increasing delayed-type hypersensitivity and enhancing proliferation of T cells in response to mitogen stimulation (Adelman and Martin, 2009). Leptin receptors have recently been found on various leukocytes, including monocytes, natural killer cells, and T and B lymphocytes (Martin-Romero et al., 2000; Zhao et al., 2003; Papanathanassoglou et al., 2006). Injections of IL-1β and TNF-α increase circulating leptin levels during the APR in rodents (Adelman and Martin, 2009; Harden et al., 2006). Circulating leptin can then act on the hypothalamus to increase the release of these cytokines via positive feedback. Interestingly, peripheral leptin induces IL-1β receptor antagonist expression on monocytes, which serves to down-regulate further production of pro-inflammatory cytokines (Adelman and Martin, 2009). Harden et al. (2006) and Sachot et al. (2004) found that leptin was associated with changes in food intake and fever during LPS immunostimulation in male rats. Administration of anti-leptin serum reversed declines in food intake and abolished fever.

Ghrelin is a potent inducer of food intake, is primarily released into circulation from the stomach, and acts upon the hypothalamus to induce hunger (Baatar et al., 2011). Exogenous ghrelin has been found to suppress IL-6, TNF-α, and IL-1β production and/or expression in rodent studies, though administration of TNF-α and endotoxin has been found to both increase and suppress ghrelin in humans and rodents (Baatar et al., 2011). Furthermore, ghrelin appears to exert its effects on cytokine expression via the vagus nerve, the hypothesized route by which peripheral cytokines exert their influence on the brain. Ghrelin reduces levels of TNF-α and IL-6 during sepsis in sham-operated control rats, but not in vagotomized animals (Baatar et al., 2011).

Melatonin

Melatonin is related to circadian and seasonal rhythms, and is secreted from the pineal gland, another of the CVO (Larson and Dunn, 2001). In addition to up-regulating IL-1β, TNF-α, and IL-6 signaling, melatonin appears to modulate severity of sickness behavior with regard to day length. Hamsters kept under long day conditions and subjected to immunological challenge show more severe sickness behavior (e.g., larger decreases in nest building, foraging etc.) than do hamsters kept under short days (Adelman and Martin, 2009). As day length varies with season, this might suggest that animals are able to devote more time and energy to healing and fighting infection during the warmer months, when resources are likely to be abundant. During the colder months, characterized by shorter days, the immediate needs of food and shelter take precedence over sickness behavior.

In sum, sickness behavior is a highly complex and phylogenetically widespread phenomenon, and is better understood in animal models than in humans. While pro-inflammatory cytokines are certainly the strongest drivers of this behavioral suite, changes in hormones such as the ones discussed above may function to either elicit the characteristic behavioral changes (e.g., hypothesized links between leptin, ghrelin, and reduced food intake) or attenuate sickness behavior (e.g., testosterone).

EXPLAINING VARIATION IN SICKNESS BEHAVIOR

Life history theory

Relatively little research has been conducted on variation in sickness behavior (e.g., strength, duration etc.), though we know from previous work, discussed above, that sickness behavior can be modulated by social stimuli and environmental context, such as male-male
competition (Ashley et al., 2009) and temperature threats to offspring survival (Aubert et al., 1997). What is currently known about variable sickness behavior responses, therefore, suggests a life history approach in which sickness behavior is seen as a component of overall somatic maintenance. Life history theory predicts that organisms will allocate limited resources (e.g., time, energy) between biological processes related to reproduction, growth, and maintenance in such a way as to maximize reproductive fitness. In general, therefore, we should expect that sick individuals would modulate their sickness behavior response depending on the value of the activities that would otherwise be sacrificed, with this value varying based on ecological condition (Ashley and Wingfield, 2012).

In addition to these two examples of trade-offs between reproduction and sickness behavior, we can list others discussed above (Owen-Ashley, 2006; Weil et al., 2006; Lopes et al., 2013). Notably, these trade-offs between reproductive effort and sickness behavior are currently only found in species with relatively fast life histories (i.e., rodents and small birds). Because of this quick tempo, time and energy devoted to recovery from injury and infection may be more costly in terms of lifetime reproductive output when compared with larger, longer-lived organisms. Sickness behavior that is more sensitive to reproductive effort could be beneficial for these former species, and the same trade-offs may not be found in species with slower life histories.

However, based on findings of reduced sexual behavior in female, but not male, rats following pro-inflammatory cytokine treatment (Avitsur et al., 1997), Avitsur and Yirmiya (1999) suggest that male responses function to maximize reproductive potential while female responses act to maximize maternal recovery and survival while simultaneously minimizing the possibility of vertical transmission of pathogens to the fetus. At the individual level, we can also expect sickness behavior to be variably expressed depending on residual reproductive value (RRV; Ashley and Wingfield, 2012). Because of the costs of sickness behavior in terms of time lost to recovery, individuals with a lower RRV (i.e., fewer future opportunities to reproduce) would be expected to devote more time and energy to reproduction at the expense of sickness behavior, while the opposite would be true for individuals with high RRV (ibid.). We have already noted a similar phenomenon among seasonal breeding male song sparrows, which do not reduce their territorial defensive behaviors during their breeding season when treated with LPS, although these same behaviors decline following treatment during the non-breeding season (Owen-Ashley, 2006).

Little, if anything, is known about trade-offs between sickness behavior and growth or development. Immune activation, generally speaking, results in reduced height in Tsimané children, particularly younger children, and those with lower energy stores (McDade et al., 2008). Higher levels of immunoglobulin E (IgE), a marker of helminth infection, were associated with lower stature in Tsimané Shuar children and adults (Blackwell et al., 2010), and similar results have been found in the Gambia (Campbell et al., 2003) and Peru (Checkley et al., 1998). It should be noted, however, that these populations are generally energy restricted in comparison to populations in developed countries. Similar studies in these latter countries may not find these trade-offs, as children would have sufficient resources to fuel both immune responses and growth. In populations that exhibit these trade-offs, and if sickness behavior does contribute to reduced convalescent times, then it may be possible that still-growing individuals who regularly sublimate the effects of sickness behavior (e.g., fatigue) and continue their normal activities show reduced growth and development compared to individuals who are more responsive to sickness behavior as their time to clearance of infections is longer, leaving less energy available for growth.

Age and pathogen exposure

As with all biological processes, immune function varies throughout the lifespan, reflecting the competing demands of somatic maintenance and growth (McDade, 2003). Following peaks in function during infancy, many aspects of immune function plateau and even decline at or around puberty (reviewed in McDade, 2003 and Graham et al., 2006). Early investment in immunity theoretically ensures survival to reproductive years, at which point gonadal hormone production is markedly upregulated, corresponding to a prioritization of reproduction at the expense of some degree of growth and maintenance (McDade, 2003). Immune function continues to decline with age in a phenomenon known as immunosenescence (Gomez et al., 2005; Graham et al., 2006). However, this immune dysregulation in the elderly appears to be combined with hyperactive inflammatory processes, including elevated circulating levels of pro-inflammatory cytokines (Gomez et al., 2005). Whether this inflammatory state is due to the ageing process, pre-existing conditions, or some combination of both remains to be seen (ibid.).

We should therefore expect to see heightened sickness behavior responses in both the young and the elderly. In the first instance, more severe behavioral changes are likely reflective of the prioritization of survival, while this phenomenon may only be a byproduct of a stronger inflammatory state in the aged. It may be possible, however, that stronger sickness behavior responses help to offset an imperfectly functioning immune system. Experimental data from animal models generally show more severe sickness behavior in older animals (Godbout, 2005; Kohman et al., 2009; Palacios et al., 2011; McLen- den et al., 2012). These findings await replication in humans, and sickness behavior in children and adolescents should be explicitly researched.

Finally, social and environmental conditions during infancy and childhood could shape sickness behavior during adulthood. Exposure to pathogens, nutrition, and psychosocial stress have all been shown to affect immune function in later life (reviewed in McDade, 2012). For instance, longitudinal data from the Philippines indicate that some proxy measures of childhood pathogen exposure are negatively associated with adult inflammation status (McDade et al., 2010). Conversely, childhood stress has been associated with higher CRP levels in adults (Danese et al., 2007; McDade et al., 2013). There is evidence from animal models that juvenile stress affects both the severity and timing of sickness behavior in adult animals (Avitsur and Sheridan, 2009). These results may have bearing on population- and individual-level differences in sickness behavior.

Sex, gender, and cultural factors

Sex (genetic/gonadal typology) and gender identity (personal, subjective experience as masculine, feminine,
or other) may also play important roles in the expression of sickness behavior within and between human populations. Unfortunately, we are aware of only a single study specifically addressing mechanisms underlying sex differences in sickness behavior in humans. In a small sample ($N = 20$) of participants receiving LPS, increases in IL-6 levels were significantly associated with increases in depressed mood in females but not males (Eisenberger et al., 2009). Interestingly, IL-6 increases in females were also associated with increased activity in brain areas (assessed via fMRI) associated with social pain (dorsal anterior cingulate cortex and right anterior insula under conditions of social exclusion) (ibid).

There is also evidence for female bias in symptom severity across a variety of cultural contexts (Torsheim et al., 2006). Typically, women report more illnesses and/or symptoms, take more sick days, and have more frequent hospital trips than men, even after accounting for reproductive health concerns (Hinkle et al., 1960; Gove and Hughes, 1979; Verbrugge, 1985; Arber and Laheja, 1993; Macran et al., 1996). Men are significantly less likely than women to have contact with a physician, regardless of income and ethnicity (Courtenay, 2000). Women report more chronic conditions, including kidney/liver trouble, urinary infections, and allergies, and days confined to bed due to disability than men (Cleary et al., 1982). Women with chronic pain conditions report more severe pain, more frequent pain bouts, and longer-lasting pain than men (Goodin et al., 2013). Migraine, irritable bowel syndrome, temporomandibular joint disorder (TMJ), and pain associated with rheumatic diseases are all more frequent in women than men (Goodin et al., 2013), and Ruau et al. (2012) find that women report increased pain intensities for acute inflammatory conditions, including sinusitis and arthropathies. Women report more angina-related chest pain than men, as well as more symptoms, including dyspnea, irritability, nausea, and dizziness (Granot et al., 2004). Women also show lower pain thresholds and tolerances to experimentally induced pain than do men (Goodin et al., 2013). Another consistent finding is greater female absence from work due to sickness, though there are a variety of factors, including gender composition of the workforce, that appear to affect these absences (Laaksonen et al., 2000). These results suggest that women typically experience their illnesses differently than men.

A mechanistic explanation of this bias in symptomology may be variation in endocrine and immune functions. Clearly, estrogens and progesterins influence immune functions (Weinberg, 1984), with estrogens stimulating both cellular (Th1) and humoral (Th2) immune responses (Butts and Sternberg, 2008; Loram et al., 2012). Women have higher serum levels of IgM and IgG, and estrogen has been shown to increase the production of both antibodies from white blood cells in vitro (Bouman, 2005).

Another very plausible mechanism for differences in symptomology, health-seeking behaviors, and conceptions of sickness is variation in gender roles (culturally expected norms of behavior). These social norms often associate seeking help or “complaining” with women, or femininity more generally, while males and “masculine” individuals are assumed to maintain a stereotypical stoicism, and interestingly, men and women who self-identify as less masculine/more feminine experience more symptoms of illness monthly (Annandale and Hunt, 1990).

Men who report being more masculine may be less likely to seek out preventative health care (Springer and Mouzon, 2011). However, this also likely depends upon different cultural conceptions of sickness and responsibility. Among African-American men there has been reported a relative lack of negative health effects of typical adherence to masculine beliefs (Springer and Mouzon, 2011). For example, self-reliant attitudes were associated with personal wellness (as well as health awareness, motivation to maintain good health, and the belief that one can influence one’s health for good or ill) in a sample of African-American men, age 18–71 years (Wade, 2009). This may be a function of how self-reliance is perceived in different ethnic groups, with this group of participants possibly associating self-reliance with responsibility, discipline, and confidence. An individual may associate each of these with maintaining good health, contrary to previous results in which self-reliance was associated with risky health behaviors in Australian men (Mahalik et al., 2007).

There is also a considerable literature covering the cultural, psychological, and biological mechanisms that might otherwise assist in buffering the effects of good health, contrary to previous results in which self-reliance was associated with risky health behaviors in Australian men (Mahalik et al., 2007).

Researchers have also reported significant differences in measures of self-perceived health between populations. For instance, Hispanic American children reported more health concerns than did their European American counterparts in a non-clinical sample (Silverman et al., 1995). This finding is in accord with other results showing that Mexican American adults report more symptoms and somatization (i.e., a preoccupation with physical symptoms that likely have a psychological, rather than physical cause) than do Caucasian adults (Escobar, 1987). Similarly, there are data suggesting that Chinese individuals (both living in Asia and as immigrants in Western countries) report more somatic symptoms of depression than do Caucasians (Ryder et al., 2008).

Cultural factors like ethnomedical beliefs, the value placed on family, collectivism, and religiosity may all mediate some of the differences in symptom reporting and perceived health between populations. For example, illness severity in Mexican Americans is often measured by two factors, pain and the appearance of blood, as well as from the basis of family members’ and acquaintances’ experiences, with illnesses “common” to this group being perceived as relatively “normal” and inconsequential (Gonzalez-Swafford and Gutierrez, 1983). This emphasis on community, family, and interdependence stands in contrast to the Anglo-American valuation of autonomy and individualism which contributes to self-control over pain and illness, as well as a reduced number of protective social factors in comparison to other ethnic groups that might otherwise assist in buffering the effects of
stress and disease (Sharp and Koopman, 2013; but see Voronov and Singer, 2002 for a critique of the individualism-collectivism construct). Other personality traits, such as stoicism and religiosity, may help shape individual or even group-level interpretations and experiences of sickness. The ability to endure pain and illness is a valued sign of strength in Mexicans and Mexican Americans (Calvillo, 2013), and high rates of self-reported stoicism in the face of pain have been reported in Andean Quichua (Incauyar Fan and Maldonado-Bouchard, 2013). A similar phenomenon has been reported in Chinese men (Hong-Gu and Vehviläinen-Julkunen, 2013). Confucianism, as practiced in China, is possibly associated with stoical attitudes towards pain and illness, particularly in males (Hong-Gu and Vehviläinen-Julkunen, 2013). A belief that illness is an act of God may predispose individuals against reporting the condition and/or seeking treatment, as has been observed in Mexican Americans (Gonzalez-Swafford and Gutierrez, 1985). It has also been reported that Anglo-Americans are less likely to use religion as a coping mechanism during chronic pain, in comparison with African-Americans (Sharp and Koopman, 2013).

Based on the findings that socially appropriate behaviors during illness (e.g., complaining of symptoms, seeking health care or other assistance, suspending economic or other social obligations to rest or recuperate etc.) vary by sex, gender, cultural context, and individual personality, it is a reasonable assumption that sickness behavior expression is also modulated by the same factors. For instance, sick individuals scoring higher on a measure of collectivism might downplay the effects of sickness behavior for relatively minor complaints (e.g., a cold, minor influenza), to avoid “becoming a burden” but to actively seek support for a more serious health problem. Similarly, more individualistic people could sublimate the effects of sickness behaviors and avoid soliciting social support at all times, perhaps preferring medical consultation to social support. Males, or individuals who exhibit more “masculine” behavioral and psychological traits, would under-report sickness behavior symptoms (lethargy, depression, and so forth) in cultural contexts that associate “male-ness” and masculinity with stoicism, dismissal of pain, etc., and the opposite may be true for females or highly feminine individuals. Finally, it should be noted that the evidence presented above is predominantly derived from industrialized, Western populations. Similar research in societies with different medical practices, gender roles etc., would be highly illuminating, and a welcome contribution to the field.

Genetic variation

There are a number of polymorphisms in the promoter regions of IL-1β, IL-6, and TNF-α that are associated with varying production of these cytokines [Allen, 1999; see Gallagher et al. (2003) for an exhaustive list of known cytokine polymorphisms, effects on expression, disease associations etc.], and it seems logical to conclude that these polymorphisms would be associated with sickness behavior. Given the strong relationships between IL-6, TNF-α, and sickness behavior, perhaps the two best candidates for initial research are IL6–174 and TNF-308.

The IL6–174 single nucleotide polymorphism (SNP) is characterized by a guanine (G) to cytosine (C) transition, and has been associated with a variety of clinical conditions, including sepsis and juvenile rheumatoid arthritis (Rivera-Chavez et al., 2003). This SNP has been reported to affect gene transcription, and is associated with baseline plasma IL-6 concentrations, such that GG homozygotes have circulating IL-6 levels approximately twice as high as CC homozygotes (Fishman et al., 1998). Endotoxin stimulated leukocytes from healthy individuals carrying the G allele produce greater amounts of IL-6 than their C counterparts (Rivera-Chavez et al., 2003). Similarly, healthy GG individuals vaccinated with Salmonella typhii vaccine show significantly higher plasma IL-6 concentrations than CC individuals following inoculation (Bennermo, 2004), and these latter individuals also have greater symptoms following inoculation with respiratory syncytial virus (Doyle et al., 2010). The low-producing CC genotype is associated with significantly fewer symptoms of depression in individuals receiving interferon-α and ribavarin treatment for chronic hepatitis C infection (Bull et al., 2008).

The TNFA-308 SNP is characterized by both a high (A) and low (G) cytokine producing allele, with AA individuals having higher circulating TNF than GG homozygotes (Abraham and Kroeger, 1999); GA individuals may have as 40% higher TNFs levels than GG individuals (Allen, 1999). This variation is likely heavily dependent on the type of immune stimulus applied (Waterer and Wunderink, 2003).

While the precise global geographic distribution of these alleles has not yet been determined, some broad patterns are evident. In general, non-Caucasian populations exhibit a much higher frequency (80–100%) of the IL6–174G allele than do Caucasians (30–45%) (Berger, 2004). The opposite is true for TNF–308, with the high producing A allele being more prevalent in European and Asian populations. Tables 2 and 3 outline allele frequencies from a variety of populations across the globe.

The adaptive nature and evolutionary history of these SNPs and their distribution throughout human populations remain to be studied. The IL6–174 G allele has been associated with greater mood disturbance in humans during viral infection (Piraino et al., 2012), and future research can expand on this result to determine the extent of any associations between these (and other) polymorphisms and sickness behavior, and establish the extent to which these frequencies exhibit a much higher frequency in more populations across the globe. Clarification of these frequencies may say much about the adaptive nature of sickness behavior if it does indeed have a variable genetic component.

Finally, intra- or inter-populational variation in those hormones associated with sickness behavior could have effects on sickness behavior expression and severity. Age may account for some of this variation, as levels of many hormones varies throughout the lifespan (e.g., the pubertal increase in testosterone and declines in older age for some populations) (Bribiescas, 2010). There is also substantial inter-populational variation in hormone levels (Ellison et al., 2002). Precisely what this inter-populational hormonal variation means in terms of sickness behavior (or, indeed, immune responses more generally) is not known.

FUTURE DIRECTIONS

A complete understanding of sickness behavior in humans should address variation in the proximate mechanisms (e.g., cytokine polymorphisms and hormone levels) as well as any possible cultural moderators (on
an individual and societal level) that can influence the expression of these behavioral changes. Figure 2 presents this model graphically. Some factors, such as cytokine polymorphisms and hormone levels, influence sickness behavior severity and duration directly, while others, including gender roles and cultural conceptions

TABLE 2. Global IL6–174 allele frequencies

<table>
<thead>
<tr>
<th>Study population</th>
<th>IL6–174 G/G</th>
<th>IL6–174 C/G</th>
<th>IL6–174 C/C</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>40%</td>
<td>42%</td>
<td>18%</td>
<td>Ivanova et al., 2010</td>
</tr>
<tr>
<td>Caucasian (women only)</td>
<td>38.1%</td>
<td>41.9%</td>
<td>20%</td>
<td>Girnita et al., 2006</td>
</tr>
<tr>
<td>African–American</td>
<td>36.3%</td>
<td>44.8%</td>
<td>18.8%</td>
<td>Ness et al., 2004</td>
</tr>
<tr>
<td>African–American</td>
<td>72%</td>
<td>26%</td>
<td>2.1%</td>
<td>Ivanova et al. 2010</td>
</tr>
<tr>
<td>African–American (women only)</td>
<td>82.9%</td>
<td>17.1%</td>
<td>–</td>
<td>Girnita et al. 2006</td>
</tr>
<tr>
<td>African–American</td>
<td>80%</td>
<td>18%</td>
<td>2%</td>
<td>Hoffmann et al., 2002</td>
</tr>
<tr>
<td>African–American (women only)</td>
<td>82.5%</td>
<td>16.4%</td>
<td>1.2%</td>
<td>Ness et al., 2004</td>
</tr>
<tr>
<td>African–American (women only)</td>
<td>86%</td>
<td>12%</td>
<td>2%</td>
<td>Hassan et al., 2003</td>
</tr>
<tr>
<td>Hispanic</td>
<td>61.5%</td>
<td>32.3%</td>
<td>6.3%</td>
<td>Ivanova et al., 2010</td>
</tr>
<tr>
<td>Hispanic</td>
<td>65.4%</td>
<td>32.1%</td>
<td>2.6%</td>
<td>Girnita et al., 2006</td>
</tr>
<tr>
<td>First-generation Cuban Americans</td>
<td>49.3%</td>
<td>39.9%</td>
<td>10.8%</td>
<td>Delaney et al., 2004</td>
</tr>
<tr>
<td>Japanese</td>
<td>100%</td>
<td>–</td>
<td>–</td>
<td>Ivanova et al., 2010</td>
</tr>
<tr>
<td>Caribbean, Central and South America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaican children</td>
<td>95%</td>
<td>6%</td>
<td>0.7%</td>
<td>Tseng et al., 2006</td>
</tr>
<tr>
<td>Brazilian</td>
<td>49.3%</td>
<td>40.8%</td>
<td>9.9%</td>
<td>Visentainer et al., 2008</td>
</tr>
<tr>
<td>Brazilians w/German ancestry</td>
<td>45.75%</td>
<td>35.1%</td>
<td>19.15%</td>
<td>Gadelha et al., 2005</td>
</tr>
<tr>
<td>Mixed Portuguese/African ancestry (Brazil)</td>
<td>71%</td>
<td>25%</td>
<td>4%</td>
<td>Gadelha et al., 2005</td>
</tr>
<tr>
<td>Indigenous Tiriyö (Brazil)</td>
<td>94.9%</td>
<td>5.1%</td>
<td>–</td>
<td>Gadelha et al., 2005</td>
</tr>
<tr>
<td>Bolivian Tsimane</td>
<td>100%</td>
<td>–</td>
<td>–</td>
<td>Vasunilashorn et al., 2011</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian males</td>
<td>23.5%</td>
<td>46.9%</td>
<td>29.6%</td>
<td>Taudorf et al., 2008</td>
</tr>
<tr>
<td>Caucasian (France)</td>
<td>36.1%</td>
<td>48.3%</td>
<td>13.2%</td>
<td>Haddy et al., 2004</td>
</tr>
<tr>
<td>Macedonian</td>
<td>47.8%</td>
<td>43.9%</td>
<td>8.3%</td>
<td>Trajkov et al., 2009</td>
</tr>
<tr>
<td>Greek Cypriot</td>
<td>67%</td>
<td>29%</td>
<td>4%</td>
<td>Costeas et al., 2003</td>
</tr>
<tr>
<td>Near and Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranians</td>
<td>40%</td>
<td>52.5%</td>
<td>7.5%</td>
<td>Bagheri et al., 2006</td>
</tr>
<tr>
<td>Asia, S.E. Asia, and Southern Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Indian</td>
<td>50.1%</td>
<td>35%</td>
<td>14.9%</td>
<td>Kesarwani et al., 2008</td>
</tr>
<tr>
<td>Han Chinese</td>
<td>99.57%</td>
<td>0.43%</td>
<td>–</td>
<td>Pan et al., 2011</td>
</tr>
<tr>
<td>Japanese</td>
<td>100%</td>
<td>–</td>
<td>–</td>
<td>Watanabe et al., 2005</td>
</tr>
</tbody>
</table>

TABLE 3. Global TNF-308 allele frequencies

<table>
<thead>
<tr>
<th>Study population</th>
<th>TNF-308 A/A</th>
<th>TNF-308 G/A</th>
<th>TNF-308 G/G</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>4%</td>
<td>15%</td>
<td>81%</td>
<td>Hassan et al., 2003</td>
</tr>
<tr>
<td>Caucasian</td>
<td>2.4%</td>
<td>25.2%</td>
<td>72.4%</td>
<td>Girnita et al., 2006</td>
</tr>
<tr>
<td>Caucasian</td>
<td>2%</td>
<td>25%</td>
<td>73%</td>
<td>Ferdinands et al., 2011</td>
</tr>
<tr>
<td>African–American</td>
<td>2%</td>
<td>24%</td>
<td>74%</td>
<td>Hassan et al., 2003</td>
</tr>
<tr>
<td>African–American</td>
<td>1.7%</td>
<td>25.4%</td>
<td>72.9%</td>
<td>Kuffner et al., 2003</td>
</tr>
<tr>
<td>African–American</td>
<td>2.9%</td>
<td>31.4%</td>
<td>65.7%</td>
<td>Girnita et al., 2006</td>
</tr>
<tr>
<td>African–American</td>
<td>–</td>
<td>44%</td>
<td>56%</td>
<td>Ferdinands et al., 2011</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3.8%</td>
<td>15.2%</td>
<td>81%</td>
<td>Girnita et al., 2006</td>
</tr>
<tr>
<td>Asian</td>
<td>–</td>
<td>14%</td>
<td>86%</td>
<td>Ferdinands et al., 2011</td>
</tr>
<tr>
<td>Caribbean, Central and South America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazilians</td>
<td>–</td>
<td>26.2%</td>
<td>73.8%</td>
<td>Visentainer et al., 2008</td>
</tr>
<tr>
<td>Brazilians (healthy controls)</td>
<td>1.6%</td>
<td>15.2%</td>
<td>83.2%</td>
<td>Hounie et al., 2008</td>
</tr>
<tr>
<td>Brazilians (OCD patients)</td>
<td>2.7%</td>
<td>27.9%</td>
<td>69.4%</td>
<td>Hounie et al., 2008</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Caucasian</td>
<td>1%</td>
<td>28.2%</td>
<td>70.7%</td>
<td>Taudorf et al., 2008</td>
</tr>
<tr>
<td>Caucasian (France)</td>
<td>1.03%</td>
<td>18.67%</td>
<td>80.5%</td>
<td>Haddy et al., 2004</td>
</tr>
<tr>
<td>Macedonians</td>
<td>1.3%</td>
<td>21.9%</td>
<td>76.8%</td>
<td>Trajkov et al., 2009</td>
</tr>
<tr>
<td>Greek Cypriot</td>
<td>–</td>
<td>15%</td>
<td>85%</td>
<td>Costeas et al., 2003</td>
</tr>
<tr>
<td>Near and Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranians</td>
<td>2.5%</td>
<td>32.5%</td>
<td>65%</td>
<td>Bagheri et al., 2006</td>
</tr>
<tr>
<td>Asia, S.E. Asia, and Southern Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>–</td>
<td>1.3%</td>
<td>98.7%</td>
<td>Watanabe et al., 2005</td>
</tr>
<tr>
<td>Ethnic Sulawesi</td>
<td>2%</td>
<td>3.2%</td>
<td>94.7%</td>
<td>Lamsis et al., 2002</td>
</tr>
<tr>
<td>Asian Indians</td>
<td>–</td>
<td>14.3%</td>
<td>85.7%</td>
<td>Gupta et al., 2009</td>
</tr>
<tr>
<td>Bhutia (Indian tribe)</td>
<td>0.14%</td>
<td>7.3%</td>
<td>92.5%</td>
<td>Sengupta et al., 2007</td>
</tr>
<tr>
<td>Kadar (Indian tribe)</td>
<td>0.1%</td>
<td>6.3%</td>
<td>93.5%</td>
<td>Sengupta et al., 2007</td>
</tr>
<tr>
<td>Iyer (Indian caste)</td>
<td>0.08%</td>
<td>5.6%</td>
<td>94.3%</td>
<td>Sengupta et al., 2007</td>
</tr>
<tr>
<td>Brahmin (Indian caste)</td>
<td>0.3%</td>
<td>8.7%</td>
<td>92.5%</td>
<td>Sengupta et al., 2007</td>
</tr>
</tbody>
</table>
of appropriate behavior while sick, affect sickness behavior expression. Still other factors, such as life history stage, may influence both.

The study of sickness behavior bridges a variety of disciplines, including immunology, behavioral ecology, and endocrinology. As such, biological anthropologists are poised to make significant contributions to the study of sickness behavior within the framework that we have outlined. Much research within biological anthropology is conducted in non-Western populations, and comparative studies are frequently done. Additionally, biological anthropologists often have the training to critically explore and explain sociocultural factors that may influence sickness behavior, as well as abiding interests in ecology and evolutionary theory to understand better the proximate and ultimate causes of this behavioral suite. Indeed, a focus on life history theory, which underlies many works of biological anthropology, is readily applicable to sickness behavior, as explored above. What remains is first to optimize human sickness behavior study designs to best capture as many of the “symptoms” of sickness behavior as possible while simultaneously measuring these changes throughout the course of illness or immune stimulation. Following this, it will be far easier to turn attention to the larger, holistic picture of human sickness behavior.

Unanswered methodological and theoretical questions

Throughout this review, we have raised several theoretical and methodological questions, which are listed in Table 4. These are, of course, not the only remaining questions in this field of enquiry. There are many methodological constraints in studying human sickness behavior. Because sickness behavior is so intertwined with the APR, it is best to begin data collection prior to the onset of signs or symptoms (i.e., during the prodromal phase). However, symptoms, by definition, signify the presence of a disease, and individuals will not seek treatment or self-identify as sick if asymptomatic. Utilizing a study design based on naturally acquired infections is therefore difficult. Furthermore, studies may be confounded immunologically by the use of different treatments for infection, which are of course ethically required when a standard of care is available.

Vollmer-Conna and coworkers (2004) examined sickness behavior in three cohorts of individuals who were infected with Q fever, Epstein-Barr virus, or Ross River virus. Patients in all three groups reported symptoms of sickness behavior, including anhedonia, fatigue, malaise, and depression (Vollmer-Conna et al., 2004). Levels of IL-6 and IL-1β released from LPS-stimulated peripheral blood mononuclear cells (PBMCs) collected from participants were found to correlate strongly with these symptoms (Vollmer-Conna et al., 2004). Imboden et al. (1961) found a similar pattern of behavioral symptoms following acute influenza infection. Individuals sick with the common cold reported lower alertness, increased negative mood, psychomotor slowing, and performed verbal reasoning and semantic processing tasks more slowly compared to healthy controls (Smith, 2012). However, these data were collected several weeks after symptom onset, on average, and it is possible that self-treatment and/or the actions of other immune molecules could confound results. Data collection should begin shortly after infection or immune stimulus exposure to capture the

Table 4. Remaining methodological and theoretical questions

<table>
<thead>
<tr>
<th>Remaining methodological points and questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assessment of full cytokine context (i.e., interactions between, and subsequent effects of, multiple endogenous cytokines) during sickness behavior.</td>
</tr>
<tr>
<td>2. In what ways do the TNF-308 and IL6–174 alleles affect sickness behavior, and do other relevant cytokine polymorphisms show similar effects?</td>
</tr>
<tr>
<td>3. What roles do anti-inflammatory cytokines (e.g., IL-4, IL-10) play in regulating sickness behavior responses?</td>
</tr>
<tr>
<td>4. How do hormones (e.g., oxytocin, cortisol) affect sickness behavior responses?</td>
</tr>
<tr>
<td>5. What effects does inhibition of individual components of sickness behavior have on survival and/or time to recovery?</td>
</tr>
<tr>
<td>6. Clarification of depression “phenotype” (e.g., depression due to cytokine activity, depression due to neurotransmitter activity, etc.) and their interconnections.</td>
</tr>
<tr>
<td>7. Does sickness behavior differ meaningfully between the developed and developing world?</td>
</tr>
<tr>
<td>8. In what ways does childhood stress affect sickness behavior severity and duration during adulthood?</td>
</tr>
<tr>
<td>9. What effect does childhood pathogen exposure have on sickness behavior severity and duration in adulthood? What contribution, if any, do local disease ecologies have on variation in sickness behavior responses?</td>
</tr>
</tbody>
</table>

Remaining theoretical questions

<table>
<thead>
<tr>
<th>Remaining theoretical questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is sickness behavior truly evolutionarily adaptive?</td>
</tr>
<tr>
<td>2. Does sickness behavior vary predictably throughout the lifespan, and if so, how?</td>
</tr>
<tr>
<td>3. Do humans show similar trade-offs between sickness behavior and other life history traits (e.g., reproduction), and what variables do these trade-offs depend on?</td>
</tr>
<tr>
<td>4. What role, if any, does individual embodiment of cultural/social values play in sickness behavior responses?</td>
</tr>
</tbody>
</table>

Fig. 2. Conceptual model of biological and social mediators of sickness behavior and its expression. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
physiological and behavioral changes associated with the APR. Experimental inoculation with a pathogen permits researchers to trace the effects of a known pathogenic organism from a known point of exposure as well as known inoculation dose. In one such study, approximately 200 subjects were experimentally exposed to either rhinovirus or influenza A. Both positive and negative affect and levels of IL-1, IL-6, and TNF-α were assessed daily for six days (Janicki-Deverts et al., 2007). In those participants that progressed to active infection, expression of all three cytokines was correlated with lower daily positive affect, which was reduced for up to 6 days after infection. Interestingly, there was no relationship between cytokine levels and negative affect (ibid). Ethical considerations dictate that experimentally infected individuals be quarantined (in this case, in a hotel) so as to not infect other people, so it is possible that an unfamiliar environment contributed to participants’ negative mood.

In other studies, LPS has been used to activate inflammatory responses. For example, food consumption decreased for up to four hours following LPS administration in 20 male volunteers, and was inversely associated with levels of both IL-6 and TNF-α (Reichenberg et al., 2002). Eisenberger and coworkers (2010) treated thirty-nine participants with either LPS or placebo, and hourly blood draws assessed circulating IL-6 and TNF-α levels through the course of the experiment (6 h). Hourly assessments of symptoms, depression, and feelings of social disconnection (arguably a better measure of the social withdrawal characteristic of sickness behavior than depression) were also collected (Eisenberger et al., 2010). LPS treatment led to significant increases in feelings of social disconnection at 2, 3, and 4 h post-injection, and this increase occurred independent of symptom severity, but was instead associated with cytokine levels (ibid). Interestingly, females showed a larger increase in feelings of social disconnection within two hours after the injection, but the same feelings lasted longer in men (up to 6 h post-injection) (ibid). This last finding continues to suggest the possibility of sex/gender differences in sickness behavior, as discussed above.

Vaccines can also be used to elicit sickness behavior, providing a naturalistic model of active infection. Brydon and coworkers (2009) found that negative mood and IL-6 increased in male subjects following administration of typhoid vaccine, and the effect was more pronounced if subjects were given stressful behavioral tasks (e.g., public speaking). It should be noted that both Brydon et al. (2009) and Eisenberger et al. (2010) were restricted to clinical settings. As with Janicki-Deverts et al. (2007), it is possible that results were influenced by this unfamiliar setting. Isolation also prevents objective measurement of some aspects of sickness behavior, namely changes in social and sexual behavior. Similarly, the brief duration of these studies, which are often completed after several hours, does not lend itself to an examination of detailed changes in diet or sleep patterns. We believe that clinical settings are ill suited to answering questions of both behavior and mood.

We suggest that the most appropriate paradigm for the study of sickness behavior is one that allows participants to go about their day-to-day lives during immune activation after a known point of exposure to an antigen. As such, the use of common vaccines may be the best solution currently available. Vaccines do not require monitoring patients for adverse reactions, as does LPS. However, vaccine responses will vary based on age (Weinberger et al., 2008), sex (Cook, 2008) and it is possible that genetic factors (Yucesoy et al., 2009; Thomas and Moridani, 2010) or even an individual's mood (Glaser et al., 2003) will affect responses. Interested researchers should remain mindful of these sources of variation. The use of non-invasive biological specimen collection methods (e.g., urine collection for quantification of IL-6) further eliminates the need for clinical settings and minimizes the possibility of stress effects on hormones and mood due to blood draws.

Longitudinal studies could provide a better understanding of mood, behavior, hormonal, and immunological responses through the course of the illness. This perspective is largely missing in the current literature. Some vaccines, such as oral typhoid and rabies, are administered multiple times throughout multiple days or weeks and could be utilized in a longitudinal study design. Researchers studying similar outcomes (e.g., stress or biomarkers (e.g., CRP) may wish to include some of the immunological or behavioral measures we have outlined above to gain a clearer understanding of these mechanisms. It is also possible to integrate measures of energy balance and availability, diet, and body composition to provide a more accurate picture of this hormone-health-behavior axis in humans. Finally, a validated survey that addresses all aspects of sickness behavior, rather than just mood or cognitive function, for example, would be most welcome.

There has been much recent interest in behavioral components of human immunity and disease avoidance (e.g., Schaller and Park, 2011), and other alternative hypotheses of the role of depression’s associations with immunity have been put forth (Raison and Miller, 2012; Anders et al., 2013). Although no small task, a better conceptualization of depression and understanding of its diverse causes and intersecting pathways would likely help to clarify competing hypotheses and experimental findings (Blume et al., 2011). Behavior, mood, inflammation, and immunity are, individually, complex phenomena in humans and other animals; together they form a far more nuanced web of connections, which we are only just beginning to fully appreciate and understand. Sickness behavior is a universal biological phenomenon situated at the intersection of behavior, culture, endocrinology, and immunology. Sickness behavior research and, more broadly, investigations into relationships among pro-inflammatory cytokines, mood, and behavior, have the potential for practical, therapeutic outcomes. For instance, it is possible that some affective disorders may be the result of chronically elevated pro-inflammatory cytokines (reviewed in Maes, 1995 and Raison et al., 2006), which suggests that therapies targeted at these cytokines may be an effective alternative to traditional anti-depressants (Tyring et al., 2006). We feel that biological anthropologists are well positioned to add to the minimal research that has been done on sickness behavior in humans, and we look forward to these contributions.

ACKNOWLEDGMENTS

The authors thank Greg Demas for providing helpful comments on an earlier draft of this article, and the two anonymous reviewers for their constructive and encouraging guidance.
LITERATURE CITED

barrier function, leading to endotoxemia and systemic inflammation. J Nutr 133:1332–1338.

of the peripheral innate immune system. FASEB J 19:1329–1331.

HUMAN SICKNESS BEHAVIOR

